If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-90x-5400=0
a = 2; b = -90; c = -5400;
Δ = b2-4ac
Δ = -902-4·2·(-5400)
Δ = 51300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51300}=\sqrt{900*57}=\sqrt{900}*\sqrt{57}=30\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-30\sqrt{57}}{2*2}=\frac{90-30\sqrt{57}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+30\sqrt{57}}{2*2}=\frac{90+30\sqrt{57}}{4} $
| 3x^2-150x-5625=0 | | 3m+8=7m-20 | | 24=6+3w | | x/20=17/20 | | (5+2w)w=63 | | 0=-16t^2-24t+180 | | 9a-2a+3a=-25 | | 4x+14=13+8x+4 | | (2)2y+6y-12=90 | | 2(2x+7)=13+2(4x+2) | | 2x)+(2x+4)=180 | | (2)2y+6y-12=180 | | z=5/2=4-z/7 | | 18x(2x-1)=6(x+2)+3x | | 4.5x-5.45=5.8 | | w^2-10=10 | | 3(a+5)+19=-2 | | (-3)+9b=96 | | -15t^2+44t-24=0 | | 4-n/2=0 | | 13/5=5/y | | 12/5=5/y | | 3(6x+1)=111 | | 13/5.0416=5/y | | 35=5(n+2$ | | p÷11+(-8)=(-6) | | 10m+(-1)=189 | | x2–4x+8=0 | | -13=(v÷10)-12 | | 12-v÷10=-13 | | -13d-19=-58 | | 59+x+(2x-17)=360 |